Condensers

A condenser is designed to transfer heat from a working fluid (e.g. water in a steam power plant) to a secondary fluid or the surrounding air. The condenser relies on the efficient heat transfer that occurs during phase changes, in this case during the condensation of a vapor into a liquid. The vapor typically enters the condenser at a temperature above that of the secondary fluid. As the vapor cools, it reaches the saturation temperature, condenses into liquid and releases large quantities of latent heat. As this process occurs along the condenser, the quantity of vapor decreases and the quantity of liquid increases; at the outlet of the condenser, only liquid remains. Some condenser designs contain an additional length to subcool this condensed liquid below the saturation temperature.

Countless variations exist in condenser design, with design variables including the working fluid, the secondary fluid, the geometry and the material. Common secondary fluids include water, air, refrigerants, or phase-change materials.

Condensers have two significant design advantages over other cooling technologies:

  • Heat transfer by latent heat is much more efficient than heat transfer by sensible heat only
  • The temperature of the working fluid stays relatively constant during condensation, which maximizes the temperature difference between the working and secondary fluid.